QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley.
نویسندگان
چکیده
Combining ecophysiological modelling and genetic mapping has increasingly received attention from researchers who wish to predict complex plant or crop traits under diverse environmental conditions. The potential for using this combined approach to predict flowering time of individual genotypes in a recombinant inbred line (RIL) population of spring barley (Hordeum vulgare L.) was examined. An ecophysiological phenology model predicts preflowering duration as affected by temperature and photoperiod, based on the following four input traits: f(o) (the minimum number of days to flowering at the optimum temperature and photoperiod), theta1 and theta2 (the development stages for the start and the end of the photoperiod-sensitive phase, respectively), and delta (the photoperiod sensitivity). The model-input trait values were obtained from a photoperiod-controlled greenhouse experiment. Assuming additivity of QTL effects, a multiple QTL model was fitted for the model-input traits using composite interval mapping. Four to seven QTL were identified for each trait. Each trait had at least one QTL specific to that trait alone. Other QTL were shared by two or all traits. Values of the model-input traits predicted for the RILs from the QTL model were fed back into the ecophysiological model. This QTL-based ecophysiological model was subsequently used to predict preflowering duration (d) for eight field trial environments. The model accounted for 72% of the observed variation among 94 RILs and 94% of the variation among the two parents across the eight environments, when observations in different environments were pooled. However, due to the low percentage (34-41%) of phenotypic variation accounted for by the identified QTL for three model-input traits (theta1, theta2 and delta), the QTL-based model accounted for somewhat less variation among the RILs than the model using original phenotypic input trait values. Nevertheless, days to flowering as predicted from the QTL-based ecophysiological model were highly correlated with days to flowering as predicted from QTL-models per environment for days to flowering per se. The ecophysiological phenology model was thus capable of extrapolating (QTL) information from one environment to another.
منابع مشابه
QTL mapping of heading date and plant height in Barley cross “Azumamugi”דKanto Nakate Gold
To identify quantitative trait loci (QTLs) controlling heading date and plant height, ninety nine F13 recombinant inbred lines (RILs) derived from barley cultivars Azumamugi × Kanto Nakate Gold cross were evaluated. The field trails were conducted at randomized complete block design with two and three replications in 2004 and 2005, respectively. Significant differences and transgrassive segrega...
متن کاملBarley Genetics Newsletter 37:5-20 (2007) Frequency distributions and composite interval mapping for QTL analysis in ‘Steptoe’ x ‘Morex’ barley mapping population
With the advancement of QTL mapping strategies, the traditional approaches for the identification of genes and their effects responsible for trait expression are gradually losing significance. The phenotypic data for heading days, plant height, peduncle length, number of tillers and stripe rust was recorded on 150 recombinant inbred line (RIL) population developed from a barley cross of ‘Stepto...
متن کاملMapping QTLs related to Zn and Fe concentrations in bread wheat (Triticum aestivum) grain using microsatellite markers
Mineral nutrient malnutrition, particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Biofortification of food crops is the best approach for conciliating the micronutrient deficiencies. Understanding the genetic basis of their accumulation is the preconditions for enhancing of these micronutrients. In our study, a mapping population of a set of 118 recombinant inbr...
متن کاملFactors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study.
We compared the accuracies of four genomic-selection prediction methods as affected by marker density, level of linkage disequilibrium (LD), quantitative trait locus (QTL) number, sample size, and level of replication in populations generated from multiple inbred lines. Marker data on 42 two-row spring barley inbred lines were used to simulate high and low LD populations from multiple inbred li...
متن کاملMapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.).
Many commercial inbred lines are available in crops. A large amount of genetic variation is preserved among these lines. The genealogical history of the inbred lines is usually well documented. However, quantitative trait loci (QTL) responsible for the genetic variances among the lines are largely unexplored due to lack of statistical methods. In this study, we show that the pedigree informatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 56 413 شماره
صفحات -
تاریخ انتشار 2005